

Disclaimer

- The views expressed by the presenters are not necessarily those of Ernst & Young LLP or other members of the global EY organization.
- These slides are for educational purposes only and are not intended to be relied upon as accounting, tax or other professional advice. Please refer to your advisors for specific advice.
- Neither EY nor any member firm thereof shall bear any responsibility whatsoever for the content, accuracy, or security of any third-party websites that are linked (by way of hyperlink or otherwise) in this presentation.

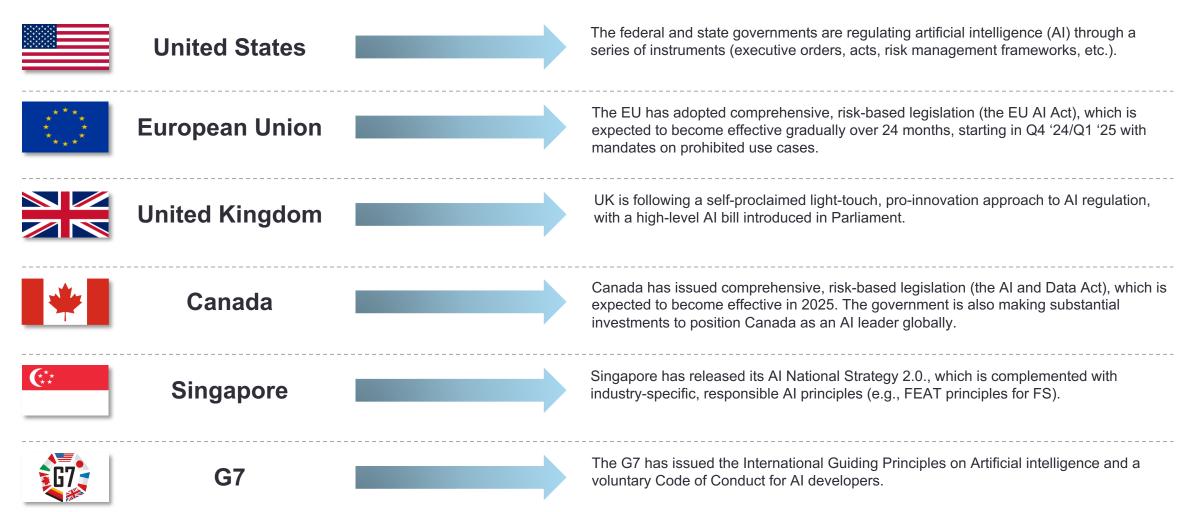
Speakers

Rani Bhuva
Principal, EY Americas Financial Services Responsible Al Leader
Ernst & Young LLP (US)

Kiranjot DhillonSenior Manager, EY Americas Financial Services Al Leader
Ernst & Young LLP (US)

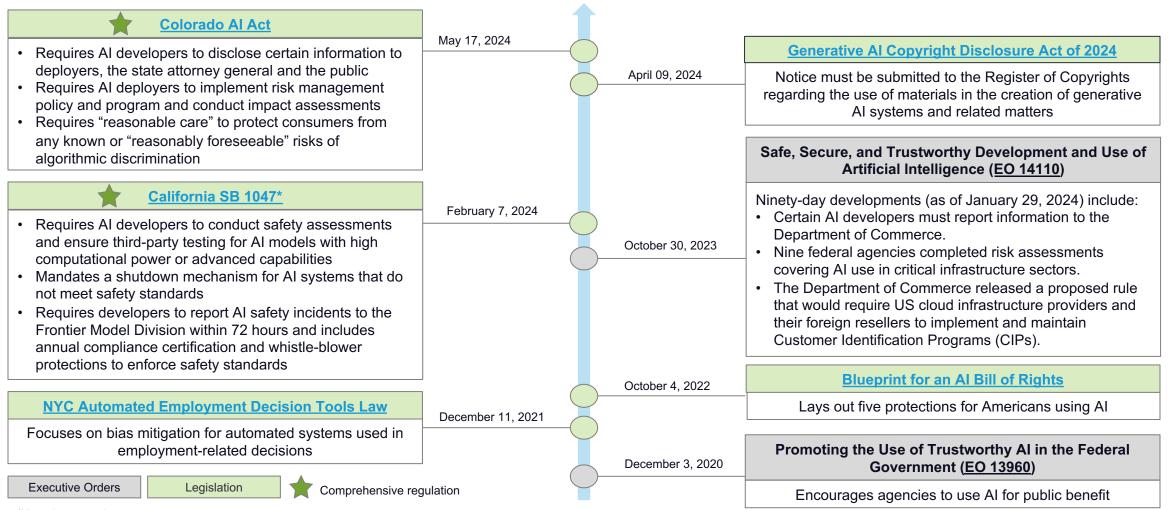
Table of Contents

01 Al — regulatory landscape


02 Emerging compliance trends

03 Al development and operationalization

Q&A


Summary of Al Regulatory and Policy Developments

Key US AI Regulatory and Policy Development



Yet to be enacted

Al Regulatory Trends and Expectations for US Banks

Leading practices

Global jurisdictions

Professional organizations

Sector & usecase specific

US national regulatory actions

USTD

CFPB

FHFA, HUD

FINRA SEC

Alignment with NIST

The What

Al governance framework

Al inventory

Reporting on Al-specific risks

Generative Al Risk Taxonomy Continues to Evolve

Heightened Risks for Generative AI (NIST AI 600-1)

Confabulation

Confidently stated but erroneous or false content

Data privacy

Leakage and unauthorized disclosure or de-anonymization of sensitive data

Intellectual property

infringement

Toxicity, bias and

homogenization GenAl models may produce toxic or

biased content due to inherent biases

in training data or feedback loops

Information integrity

Generation, exchange and consumption of content that may not be vetted, accurate, etc.

Value chain

Non-transparent or untraceable integration of upstream

components across the Al lifecycle

<..>

Security

Data capability

Existing data capabilities (e.g., data

modeling, storage, processing) and

data governance (e.g., lineage and

traceability) may not be sufficient for

fine-tuning and business use of GenAl

Training data and trained GenAl model may be leaked out of the institution or vendor platform due to cyber attack or adversarial prompt engineering

Risk Carried Over from Existing Al Models

Bias/fairness

Technology capability

GenAl adoption increases the

computational needs and therefore

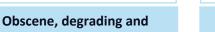
potentially impacts the current use of

infrastructure by other business use

Large volume of training data used in pre-training may introduce bias and unfairness

Complex model and training process make it hard to identify and control

Environmental


Negative ecosystem impact due to high resource usage in training models

abusive content

GenAl may intensify the spread of

harmful and explicit content.

heightening privacy/safety risks

Dangerous or violent recommendations

GenAl eases the ability for bad faith actors to generate violent, inciting or threatening content

<u>≅</u>-Human-Al configuration

Arrangement or interaction of humans and AI systems that can result in algorithmic aversion, automation bias, overreliance, anthropomorphization, etc.

CBRN information

Eased access to nefarious information related to chemical. biological, radiological or nuclear (CBRN) weapons

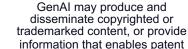
Business continuity

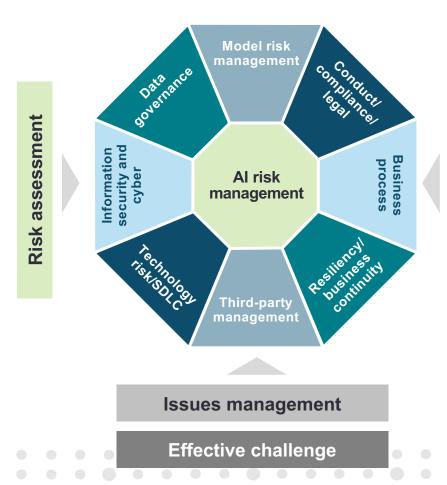
Heavy reliance on third-party pretrained complex GAI, may aggravate the business continuity

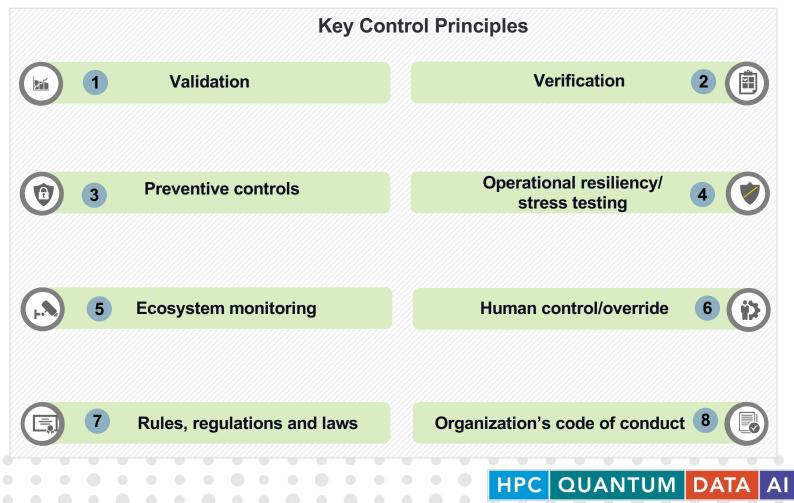
Explainability

Large models can make the GenAl a black box, which lacks explainability

Source: NIST AI 600-1 publication




GenAl-powered threats and increased available attack surface for targeted cyber attacks



Effective and Responsible Al Governance Requires Enterprise-wide Coordination

Key AI control principles establish the foundational principles for AI agnostic to the underlying use case/technique.

Need for Tollgates at the Onset and Throughout the Generative Al Development Lifecycle

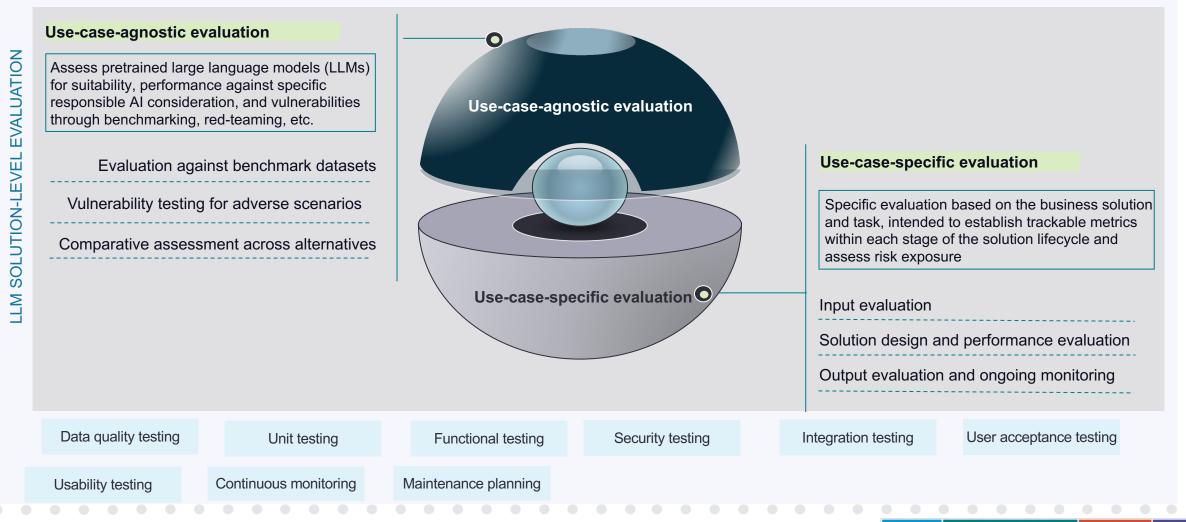
Tollgate 1 Tollgate 2 Tollgate 3 Tollgate 4 Tollgate 5

Initialization Data Solution development Validation Implementation

- Design and infrastructure feasibility
- Confirm organizational strategy and governance requirements
- Define situations/thresholds
- Input data assessment –
 solution specific and broader
 RAI (toxicity, PII personally
 identifiable information leakage, etc.)
- Red-teaming and benchmark evaluation

- Task-specific metrics: faithfulness, answer relevancy, golden data set F1
- Task-agnostic metrics: metacognition, harmlessness, logical robustness

- · Benchmark evaluation scores
- Red-teaming evaluation scores
- Re-evaluation of solution testing outputs


- Deployment testing and protocols
- Configure solution monitoring metrics
- Software development lifecycle (SDLC) testing

Ongoing monitoring/recommendations

Evaluation Considerations for Generative Al Solutions to Ensure Performance, and Identify and Mitigate Risks

Use-case Specific Solution Design and Evaluation Consideration

Input Evaluation		Solution Engineering		Human Oversight and Monitoring
Performance evaluation and monitoring vertical				
) Zelo×			
Input query	User guardrailing	RAG/LLM solution	Output alignment	Ongoing monitoring
	Prompt library (prompt techniques) Zero-shot prompt Few-shot prompt	Solution evaluation	Output evaluation	Output logs
•	Chain of thought (CoT) Chain of density (CoD) Chain of verification (CoVe)	LLM Generated Metrics : faithfulness, answer relevancy and context relevancy, logical correctness	Metrics: Rouge, Bleu, BERT- f1, Perplexity (require ground truth)	 Consolidating logs for ongoing model evaluation Using various queries and corresponding embeddings for performance analysis

Select Prompting Techniques to Build Robust LLM Solutions

Zero-shot prompting

Few-shot prompting

Chain-of-thought prompting

Chain-of-density prompting

Prompt

Write a summary of the following news article. Article: X

Output: Summary: ...

Prompt

Write a summary of the following news article. Article: X

Here is a sample:

Article: "A study says eating chocolate weekly lowers heart disease ... eaten in moderation." Summary: The study links chocolate consumption ... best choice, but moderation is key

Output: Summary: ...

Prompt

Write a summary of the following news article.

Article: X

Instructions: Outline the thought process step by step

Output:

Step 1: Fact X is essential ...

Step 2: Following reasoning depends on fact ... Summary: ...

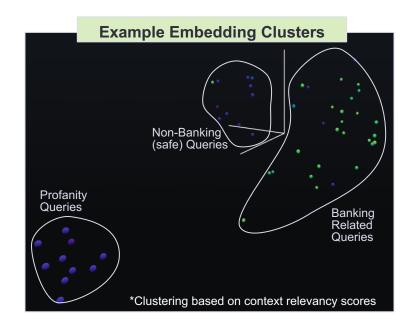
Prompt

Generate concise, entity-dense summaries of the Article: X

Identify up to three informative entities missing from the previous summary. Write a new, denser summary covering all entities and details from the previous summary plus the missing entities.

Output:

Summary 1: ...
Summary 2: ...


Ongoing Monitoring of Developed Solution to Ensure Performance

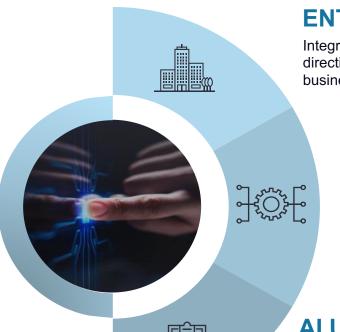
Accessible visualizations and statistics can be employed for ongoing monitoring & human-oversight. These methods can help adding efficiencies to the manual review requirements for tracking the solution post launch.

Approach

- Create vector embeddings of the knowledge base, query, and response
- Reduce dimensionality of the vector representation using UMAP* for enhanced visualization
- Perform data clustering using HDBSCAN** to automatically cluster data points
- Introduce additional metrics to enhance visualization capabilities
- Easily surface up and filter on clusters which exhibit unique characteristics for ongoing monitoring and human-oversight

*UMAP: Uniform Manifold Approximation and Projection

**HDBSCAN: Hierarchical Density-Based Spatial Clustering of Applications with Noise


Driving Value Through Al

The evolving regulatory and compliance landscape necessitates robust AI governance at enterprise, process and use case levels to mitigate risks, enforce controls and sustain value creation through AI.

AI VALUE CREATION

Responsible AI governance across levels drives economic, social and organizational benefits by enabling ethical compliance, fostering innovation, and supporting sustainable, long-term value creation in line with societal expectations.

ENTERPRISE LEVEL

Integrate an AI governance framework at the enterprise level to set strategic direction and policies for AI utilization, facilitating ethical practices and alignment with business strategy.

PROCESS LEVEL

At the process level, it is essential to identify risks and implement controls to maintain the integrity and governance of Al operations.

AI USE CASE LEVEL

When developing AI use cases, it's crucial to design safe AI solutions with built-in monitoring protocols and to incorporate independent validation checks to maintain solution integrity and enable responsible use of AI.